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This research program has been conducted in the framework of the NASA Earth and Space 
Science (ESS) evaluations led by Dr. Thomas Sterling. In addition to the many important 
research findings for NASA and the prestigious publications, the program has helped 
orient@ the doctoral research program of two students towards ywallel inputhutput in 
high-performance computing. Further, the experimental results in the case of the MasPar 
were very useful and helpful to MasPar with which the P.I. has had many interactions with 
the technical management. The contributions of this program are drawn from three 
experimental studies conducted on different high-performance computing 
testbeds/platforms, and therefore presented in 3 different segments as follows. 



1. Evaluating the parallel input/output subsystem of a NASA high-performance 
computing testbeds, namely the MasPar MP- 1 and MP-2; 
2. Characterizing the physical input/output request patterns for NASA ESS 
applications, which used the Beowulf platform; and 
3. Dynamic scheduling techniques for hiding VO latency in parallel applications 
such as sparse matrix computations. This study also has been conducted on the 
Intel Paragon and has also provided an experimental evaluation for the Parallel File 
System (PFS) and parallel input/output on the Paragon. 

This report is organized as follows. The summary of findings discusses the results of each 
of the aforementioned 3 studies. Three appendices, each containing a key scholarly 
research paper that details the work in one of the studies are included. 

SUMMARY OF FINDINGS 

MasPar Evaluations 
This work has shown that programmers of UO-intensive scientific applications can tune 
their programs to attain good VO performance when using the MasPar. They should be at 
least aware of their VO configuration, the specific I/O RAM size and how it is locally 
partitioned in an attempt to partition data into files that can fit into the VO RAM. The work 
further establishes that system managers are also encouraged to understand the VO resource 
requirements of the applications running on their machines and tune the VO RAM 
configuration for best performance. In specific, partitioning the VO RAM among disk 
reads, disk writes, data processing unit @PU) to front end communications, and 
interprocessor communications should be based on an understanding of the most common 
needs of the local application domain. Finally, the work has demonstrated that a full 

MasPar configuration with MPIOCW and a full I/O RAM has potential for delivering 
scdab!e high I,’O prfmmaiice. However h i  this to h q p n  the YO MM management 
should make good attempt to prefetch anticipated data. Further, the VO RAM partitioning 
strategy should be more flexible by using cache blocks for different purposes as 
dynamically needed by the applications. At the least, fides smaller than the I/O RAM size 
should be cacheable. Finaliy, the sustained performance of the disk arrays remains to be 

the clear bottleneck and is likely to limit the overall performance of parallel VO systems for 
some time to come. For more details on this study, refer to appendix A. 
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Phvsical VO Regllests of ESS lezp licatim 
This work has clearly shown that device driver instrumentation has the ability to distinguish 
among the different activities in the system, small explicit requests (less than page size), 
paging(4KB each in this case), and large objects (such as images). Further, it was shown 
ESS codes have high spatial VO access locality, 90% of accesses into 10% of space. On 
the other hand, temporal locality was measured as frequency of accesses and observed to 
be as high as 6 repeated accesses per second. In general, astrophysics simulation codes 
(PPM and Nbody) have similar VO characteristics and have shown very little VO 
requirements for the used problem sizes. Wavelet code, however, required a lot of paging 
due to the use of many different files for output and scratch pad manipulations, and could 
benefit from some tuning to improve data locality. It is therefore advised that a strategy for 
file usage and explicit VO requests for this code be developed to do so. On the system 
side, Linux tends to allow larger physical requests when more processes are running, by 
allocating additional blocks for VO. It is therefore recommended that Linux file caching 
should be further investigated and optimized to suite the big variability in the physical 
requests of NASA ESS domain. This study was done in collaboration with Mike R. Berry 
(GWU). 

Dvnamic I/O Sc hedulinP - and PFS Evaluatio nS 

Using the worker-manager paradigm, we have introduced a dynamic VO scheduling 
algorithm which maximizes VO latency hiding by overlapping with computations at run- 
time, and is also capable of balancing the total load (YO and processing). Using sparse 
matrix applications as a test case, we have shown empirically that such scheduling can 
produce performance gains in excess of 10%. Much higher improvement rates are 

expected when the non-zero elements are distributed in a skewed manner in sparse matrix 

and was shown to be very satisfactory under these scheduling schemes. In addition, the 
Paragon parallel file system (PFS) was evaluated and its various ways of performing 
collective input/output were studied. It was shown that the performance of the various calls 

CdlS bjat allow Conciilliiii 

asynchronous access of processors to their respective blocks, but provide ordering at the 
user level performed better than the rest. This study was conducted in collaboration with 
Sorin Nastea (GMU) and Ophir Frieder (GMU). 

uyy.. annliptinns. -.."I. nae  efid (inc!u&fig &/Q) sc&bzity =f such qp!icg$-~fis was sp~&ied 

&jjeiib hezV*j. 63 cu"le of riialaging &e file poiniei-jsj. 
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Abstract 

Input/output speed continues to present a performance bottleneck for high-performance 
computing systems. This is because technology improves processor speed, memory 
speed and capacity, and disk capacity at a much higher-rate. Developments in VO 
architecture have been attempting to reduce this performance gap. The MasPar VO 
architecture includes many interesting features. This work presents an experimental study 
of the dynamic characteristics of the MasPar parallel YO. Performance measurements 
were collected and compared for the MasPar MP-1 and MP-2 testbeds at NASA GSFC. 
The results have revealed many strengths as well as areas for potential improvements and 
are helpful to software developers, systems managers, and system designers. 

1. Introduction 

This study is aimed at the experimental performance evaluation of the MasPar VO subsystem. Many VO 
benchmarks have been developed and used by researchers for such investigations. A representative set of 
them is discussed here. These benchmarks can be divided into two main categories: application benchmarks 
and synthetic benchmarks. Selecting one over the other depends on the goals of the evaluation study. This 
is because application benchmarks are unique in providing performance results that are understandable to 
application-domain experts. Meanwhile, synthetic benchmarks (part~cularly those that are based on 
parameterized workload models [Jain91]) have the potential for providing insightful understanding of the 
architectural characteristics of the underlying VO subsystem. 

Among the VO application benchmarks are Andrew [Howard88], TPC-B[TPCB90], and Sdet 
[Gaede81,Gaede82]. Andrew is more of a file system benchmark. As a workload, it copies a file directcry 
hierarchy, then reads and compiles the new copy. Clearly, much of this work is not necessarily YO. 
TPC-B [TPCB90] is a transaction processing benchmark aimed at evaluating machines running database 
systems in a banking environment. Despite being I/O intensive, TPC-B takes into account database 
software. The workload generates, using simulated customer random requests, debit-credit transactions to 
read and update account, branch, and teller balances. Sdet is another VO benchmark which is produced by 
the System Performance Evaluation Cooperative (SPEC). SPEC produces independent standard benchmarks 
[Scott 901 and it is well known for its CPU performance benchmark, SPEC Release 1.0. Sdet is a part of 
their System Development Multitasking (SDM) suite. The workload is based on softwaredevelopment 
environment including text editing and compiling. 

Many synthetic VO benchmarks were also developed. The list includes IOStone [park90], 
LADDIS INelson921, and Willy [Chen92]. IOStone generates request patterns that approximate locality 
properties. IOStone, however, does not consider concurrency. All requests are generated using a single 
process. LADDIS, on the other hand, is a multi-vendor benchmark intended to evaluate ClienVServer 
Network File Systems (NFS) and is actually based on NFSStone [Shein89]. Willy, however, represents a 
good step on the right direction. Willy is based on a parametrized workload model and allows for gaining 
architectural insight from evaluations. It is described [Chen92] as self-scaled and predictive. Scaling, in the 
coiitext of the airhi ,  refers to chailging orie workioad parameter whiie fixing the rest. Prediction refers to 
the ability to predict the performance under workloads that were not actually used, but should be within 

'This work is supported by NASA HPCC Program for Basic Research through 
CESDIS University Program in High-Performance Computing, grant ## 5 5 5 5 -  18 
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Figure1 . The MasPar Parallel Input/Output Architecture 

10%-15% of previously used workloads. Willy mainly generates workloads for workstations ad 
multiprocessor systems with a few number of processors. 

Since the goal of this study is to explore the characteristics of the MasPar pardlel VO subsystem, 
synthetic benchmarking was used to accomplish that in a massively parallel SIMD architecture. The 
workloads generated were, therefore, designed to isolate the behaviors of the PEs-to-1/0 communication 
channel speed, the VO cache management, and the disk array. In that sense, the workloads generated here are 
cioseiy reiatd to hose produced by Wiiiy. 

This paper is organized as follows. Section 2 discusses the MasPar general architecture, while the 
two main VO subsystem configuration alternatives are discussed in section 3. Sections 4 and 5 present the 
experiments as well as the experimental results, for the MasPar MP-1 and MP-2 respectively. Conclusions 
and general remarks are given in Section 6. 
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2. The MasPar Architecture 

Maspar computer corporation currently produces two families of massively parallel-processor 
computers, namely the Mp-1 and the MP-2. Both systems are essentially similar, except that the second 
generation (MP-2) uses 32-bit RISC processors instead of the 4-bit processors used in MP-1. The W a r  
MP-1 (MP-2) is a SIMD machine with an array of up to 16K processing elements (PES), operating under 
the control of a central array control unit (ACU), see figure 1. The processors are interconnected via the X- 
net into a 2D mesh with diagonal and toroidal connections. In addition, a multistage interconnection 
network called the global router (GR) uses circuit switching for fast point-to-point and permutation 
transactions between distant processors. A data broadcasting facility is also provided between the ACU and 
the PE. Every 4x4 neighboring PES form a cluster which shares a serial connection into the global router. 
Using these shared wires, array VO is performed via the global router, which is directly connected to the YO 
RAM as shown in figure 1. The number of these wires, thus, grows as the number of PES providing 
potential for scalable ID bandwidth. Data is striped across the MasPar disk array (MPDA), which uses a 
RAID-3 configuration, typically with two optional parity disks and one hot standby. For more information 
on the MasPar, the reader can consult the MasPar Rfmces  cited at the end of this study 
[Blank9Ol~MasPa192l[Nichols90]. 

3. MPIOCTM Versus the PVME YO Configurations 

Based on the I/O structure, the MasPar computers can be divided into two categories: the MasPar VO 
channel (MPIOCTM ) configuration and the parallel VME (PVME) configuration. It should be noted, 
however, that the two configurations are not mutually exclusive and they coexist in the MPIOCTM 
configurations. The PVME, however, is the standard MasPar I/O subsystem and has no MPIOCTM. It 
should be noted that MasPar 40 subsystem architecture is the same for both the MP-1 and the MP-2 series. 

3.1 The PVME YO Subsystem Configuration 
PVME, or parallel VME, is actually the MasPar name for the VO controller, a VME bus, and a limited 
amount (8 MB) of ID RAM. The PVME 40 configuration is the MasPar standard I/O subsystem and it 
includes all I/O components shown in solid lines in figure 1. The PVME configuration, therefore, is the 
most common I/O subsystem on MasPar computers. 

3.2 The MPIOCTM Configuration 
This is the more expensive configuration and, thus, the one which has the potential to offer the higher I/O 
bandwidth due to the high speed MasPar channel, MPIOCTM, shown in dotted lines in figure 1. Disk 
controllers interface directly to the channel. A small fraction of MasPar installations have MPIOCW- 
based 1/0 subsystems. Examples are the the current MasPar facility at NASA GSFC and the installations 
at Lockheed and Lawrence Berkeley Labs. The I/O controller (IOCTLR) provides an 8 Mbytes of I/O RAM 
connected directly to 64 wires from the global router, as was the case in the PVME. Optional I/O RAMS 
can be added to the MpIOCm using either 32 Mbyte or 128 Mbyte modules. All memory is Error Code 
Correction (ECC)-protected. Each additional VO RAM, up to a total of four, connects to a different set of 
256 wires of the global router, in full PE configurations of 16K PES. More 1/0 RAM modules, however, 
can be added in parallel for a total of 1 Gbyte of 1/0 RAM at most[MasPa192]. The MPIOCTM is 
functionally similar to a HIPPI channel with 64 bit data bus and can transfer data up to a maximum rate of 
200 MB/Sec. 

While the number of links from the PE array to the 1/0 subsystem scales with the size of the array 
providing up to 1024 wires for the 16K processor system, the 1/0 RAM size can grow up to 1 Gbytes. 
However, since each of the 128 (32) Mbyte modules is linked by 256 wires to the I/O-Global Router link 
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Figure 2. Effects of the transfer block size using the full MP-1 array 

(1024 wires), we believe that an MPIOCW with .5 Gbyte made out of 128 Mbyte modules has the 
potential for the best scalability characteristics per dollar. However, more VO RAM still means more fies 
(or bigger files) in the cache and thus better I/O performance. 

3.3. Scope and Methodology of this Study 

This work was conducted using two case study configurations at NASA GSFC. The first is a PVME 
configured MP-1 which was used to generate the results in section 4. Last Spring, this installation was 
upgraded to an MPIOC configured MP-2, which was used to generate the results in section 5. These will 
be referred to as the MP-1 and the MP-2 in the rest of this paper for simplicity. The MP-1 had 16K PES 
and a disk array model DA3016 with 16 disks m g e d  into two banks, two parity disks, and one hot 
standby providing a total capacity of 11 GB. The 1/0 RAM was limited to the 8h4B supplied by the 
IOCTLR. The MasPar published peak bandwidth for the PVME is 16 MB/Sec. In the PVME 
configmtions, only 64 wires are used to connect the PE array to I/O system through the global router, 
regardless of the number of PES in the array. 

The MP-2 upgrade has also 16K PES and equipped with an VO channel (MPIOC) and a 32 Mbyte 
YO RAM module. This implies that 256 wires of the global router are connecting the PE array to the 
MPIOC. Two RAID-3 disk arrays (type DK516-15) are also included, each of which has 8 disks and 
delivers a MasPar published sustained performance of 15 Mbytes/sec. 

Wall clock time was used to time all measured activities. Unless otherwise is stated, 
measurements were filtered to remove any unusual observations. Filtering was accomplished by taking the 
average of an interval of m observations. This process was repealed n times and the median of these 
averages was used to represent the observation. This has also given the cache the opportunity to warm up 
and augment its performance into the measurements, for files of sizes that fit into the cache. Files of sizes 
greater than that were not able to take advantage of the IORAM. In each experiment, files that much 
smaller than the IORAM size as well as files that are much larger than the IORAM were used to repmxnt 
the en& span of performance observations that one can get out of scientific sequential workloads. 
Measurements were collected using parallel read and write system calls. Therefore, this study reflects the 
performance as seen through the MasPar file system (MPFS). 

In the context of this work, and unless otherwise is stated, the terms VO RAM, cache, disk cache, 
and L'O cache indicate the solid state memory interfacing the ii0 subsystem to h e  iviasPar PE array through 
the global router. 
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Figure 3. Effects of transfer block size using 64x64 MP-1 PES 

The designed experiments were intended to study the dynamic properties of the MasPar I/O system. In all 
experiments, the used metric was the bandwidth reported in MB/Sec. Workload was generated by changing 
a number of parallel 1/0 request attributes. Parameters that were varied in these experiments include: 
number of PES, number of bytes to be transferred by each PE, the file size, the type of I/O operation (read, 
write, or read/write), and the number of active files. Generated accesses were sequential which is the case in 
the majority of scientific applications [Millefll]. 

4.1. Effects of Transfer Block Size 

The experiment of figure 2 is intended to study the effect of the transfer sizes on the performance, with the 
YO RAM warmed up. All 16k PES are used. Performance using the 2 MByte file is far better than that of 
the 10 Mbyte, which suggests that while the 2 Mbyte file seem to fit into the 1/0 RAM, the 10 Mbyte far 
exceeds the size to the 1/0 RAM. The 2 Mbyte file shows an I/O bandwidth peak of about 42 Mbytes/Sec, 
when the transfer sizes were kept at 64 byte per PE. 
Figure 3, however, reports the results of a similar experiment, except that only a grid of 64x64 (4K) PES is 
used. Graph is similar to previous one except that the peak is smaller and it occurs at a transfer size of 128 
byte per PE, or a total transfer size of 512 Kbyte. Since the total transfer size in the previous case was 1 
Mbyte, the peak was expected here at 256 byte per PE. This suggests that either: (1) the link scales down 
with the lower number of processors; or (2) the processors or their memories are not fast enough. The first 
possibility is excluded for PVME since the link between the PE and the I/O subsystem is fixed at 64 wires 
(MBytes per second). Thus, it seems that the limiting factor here was the processors' local memories speed. 
Comparing the optimal transfer size and the peak performance in this case and the previous one, leads to 
believe that the MasPar possess favorable scalability characteristics that should be further studied. 

4.2. Dynamic Behaviors of I/O Caches 

Dynamic cache size can be affected by the specifics of the implementation. The experiments in this 
section are designed to focus on the dynamic cache attributes such as the effective read and write cache sizes, 
as well as prefetching and write-behinds. 

4.2.1 Effective Cache Sizes 
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Figure 4. Effective I/O Read Cache on the PVME Configured MP-1 

Figure 4 presents the results of the first experiment in this group, which investigates the effective I/O cache 
read size. The transfer size of 64 bytes per PE offers the best match for the 16K PE. Regardless of the used 
transfer sizes, performance degrades rapidly when file sizes exceed the 4 Mbyte boundary which indicates 
that the effective read cache size is 4 Mbyte. 
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Figure 5. Effective 110 Write Cache on the PVME Configured MP-1 

The write counterpart on the previous experiment is reported in figure 5. Results are very similar to those 
of the read case with a few exceptions. When the transfer size is big enough to result in an overall transfer 
size that exceeds the file size. some processors will have to remain idle and the overall performance will 
degrade. Tis resulted in an early performance degmdahon in the case of 128 and 256 byte transfers. This 
situation does not arise in the reads, where the transferred bytes are distributed over all enabled processors. 
Furthermore, performance degrades when file sizes exceed the 3 Mbyte limit. This indicates that the cache 
write size is 3 Mbytes. The 4 Mbyte effective read cache size and the 3 Mbyte effective write size were due 
to the system set up of the 8 Mbyte I/O RAM. The I/O RAM can be partitioned into buffers that are to 
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Figure 6. Effect of Read/Write Mode on Reads 

Mbyte for disk writes, and 1 Mbyte for communications with the front end [Busse93]. Finally, the 
bandwidth for larger files that can not fit into the cache is slightly higher than the bandwidth of similar file 
sizes in the case of read. This is mainly due to the write-behind which allows the executing process to 
write to the UO RAM. Writing to the disk proceeds later asynchronous of the processing. 

Since different cache blocks seem to be used for readable and writeable files, it became of interests to see the 
effect of opening a file with a read/write mode on read operations. The experiment of figure 6 examines this 
behavior. Performance of reads in this case falls between the read and the write performance. 

4.2.2 File Prefetching 
Individual measurements were collected with and without flushing the UO RAM in between. It was found 
that the only form prefetching is to leave files in the cache for future references once they are read, provided 
the file in question fits into the allocated part of the UO RAM. This is done even after the file is closed by 
the application. There was no indication from our measurements that a part of a file is cached if the entire 
file size is too big to fit into the cache. 

4.3. 110 Scalability 
In our context, scalability refers to the ability of the UO bandwidth to increase as the number of processors 
participating in VO activities grow. The experiment of figure 7, was designed to study the scalability 
characteristics of the UO subsystem. The size of the system, no. of PES, under study is changed here by 
changing the active set enabling only a subset of processors. The X-axis represents the dimensionally "n" 
of the enabled "nxn" submesh. The system exhibits good UO scalability as long as files fit into the cache. 
Spikes of unusually high performance were noticed at 32x32, 64x64. 96x96, and 128x128 processor 
subsystems. These subsystems are all multiples of 32x32 (1 K processors) which suggests that optimal 
performance is reached when the used processors are multiples of lk. The reason for this is the fixed YO- 
Roiiki Biik of 64 wires in the PVbE configurriiioii. "necaii that each one of iliese wires clii coanect, via 
the global router, to a cluster of 16 processors. Thus, the 64 wires can connect to a 1K partition of the 
processor array. Therefore, when a multiple of 1K processors are performing I/O, all wires of the link m 
used up all the time providing the potential for maximum bandwidth. The 96x96 processor case, although 
meets the criteria for high performance, does not show as much improvement in performance as the other 
three points. This behavior remains hard to explain. This, however, is the only case where this multiple of 
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1K is not a power of two, which might have resulted in some mismatching with other internal design or 
packaging properties. Outside the cache, performance is degraded and the bandwidth does not seem to scale 
with the increase in the number of processors involved in the VO. 

5. MP-2 Case Study Measurements 

A representative set of measurements were obtained once the MP-1 was upgraded to an MP-2 with MPIOC 
and I/O RAM. The measurements were designed to highlight the important aspects of the upgrade. 
Discovering the effective cache sizes and assessing the scalabiltiy were clear targets to see how the 
configuration relates to its predecessor and how the performance of the MPIOC relates to that of the standard 
PVME. The effective read cache size measurements are shown in figure 8. The performance of mds drops 
significantly when file sizes exceed 12 Mbytes. Thus, the effective cache size is 12 Mbytes for reads. 
Transfer blocks of sizes 64 remain to do well but their good performance could also be obtained by using 
blocks of 128 bytes instead. The 12 M byte was also found to be the entire allocation for the MasPar file 
system (MPFS) out of the used 32 Mbyte I/O RAM. When file sizes exceed the 12 Mbyte limit, the 
sustained disk array speed is about 10 Mbyte/ Sec which is 33% less than the published rate. However, the 
published rate of 15 Mbyte/Sec is achievable with very large files as will be shown later. 

Effective write cache size, as seen in figure 9, remains at 3 Mbyte even with the increased caching 
space due to the VO RAM module. Furthermore, the write performance is about one order of magnitude 
worse than that of the read. 

Prefetching is not different from the first case study and is still following the same simple stmtegy 
of leaving a previously read file in the cache. Prefetching on this system was again studied by collecting 
individual (non averaged) measurements with and without cache flushing in between. 

Scalabiltiy measurements were coilected for two files of sizes IO Mbyte and i00 Mbyte & 
parallel read operations and plotted in figure 10. This figure resembles figure 7 in the general form but now 
with much greater values. For the 100 Mbyte case, the system runs at the speed of the disk m y  which 
now demonstrates a sustained performance equal the published 15 Mbyte/Sec. The 10 Mbyte file displays a 
great positive spike at 128x128 PES. This is consistent with figure 7 and the fact that in this new 
configuration our VO RAM module provide 256 wires that support 4K PES through the global router. 
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Thus, positive spikes are expected at dimensionalities that provide multiples of 4K, namely 64x64 and 
128x128. No such spike was observed however at 64x64. The negative spikes are basically due to the 
systems activities at the time of the measurements. 

6. Conclusions 

The W a r  has been known for its cost efficiency, ease of use, and computational performance. This work 
has shown that programmers of VO-intensive scientific applications can tune their programs to attain good 
VO performance when using the MasPar. They should be at least aware of their VO configuration, the 
specific VO RAM size and how it is locally partitioned in an attempt to partition data into files that can fit 
into the ID RAM. The work further establishes that system managers are also enmuraged to understand 
the VO resource requirements of the applications running on their machines and tune the VO RAM 
configuration for best performance. In specific, partitioning the VO RAM among disk reads, disk writes, 
data processing unit (DPU) to front end communications, and interprocessor communications should be 
based on an understanding of the most common needs of the local application domain. Finally, the work 
has demonstrated that a full MasPar configuration with MPIOCTM and a full VO RAM has potential for 
delivering scalable high VO performance. However for this to happen the VO RAM management should 
make good attempt to prefetch anticipated data. Further, the VO RAM partitioning strategy should be more 
flexible by using cache blocks for different purposes as dynamically needed by the applications. At the 
least, files smaller than the VO RAM size should be cacheable. Finally, the sustained performance of the 
disk arrays remains to be the clear bottleneck and is likely to limit the overall performance of parallel I/O 
systems for some time to come. 
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Abstract 

Parallel inpudoutput (UO) workload characten':arion 
studies are necessary to  bener understand the factors that 
dominate performance. When translared into system 
design pnhciples this knowledge can lead to hightr 
performancdcost s y s t e m .  In this paper we present rhe 
expenmend  results of an UO workload characteri:arion 
sxudy of NASA Earth and Space Sciences ( a s )  

. applications. Measurements were col!ected using device 
driver instrumentation. Baseline mearurements. wirh no 
workload. and measurements during regular application 
rum. were collected and then analyzed and correlared It 
will be shown how the observed disk PO can be identiJied 
as block rransfers. page requests. and cdchl, activity. ord 
how the ESS applications are characterized by a high 
degree of sparial and temporal locaiiy. 

1. Introduction 

In recent literature, the YO performance bottleneck has 
been extensively addressed. It is clear that the current 
trends in technology will continue to increase h e  
performance gap between processing and YO. However. 
the improvement of parallel VO architectures and file 
systems can help in reducing this gap. Improving these 
mhitecmres. wirh cost-efficient solutions, requires an in-  
depth understanding of the VO characteristics and 
resource needs of the underlying applications. 
Capitalizing on the most common and dominant machine 
behaviors thus allows significant performance benefits to 
be achieved at relatively low cost. In this paper we 
disciiss empirjcal resi;!~ frcm ea: wmkload 

This mearch is supported by the a S D l S  Univvsity Program in 
High-Pcrformana Computing under USRA subconuact 5555 U18. 

1063-7133/96 $5.00 0 1996 IEEE 
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charactenzatlon study conducted in the NASA EsS 
application domain, revealing the important YO workload 
characteristics and the underlying factors. 

VO workload characterization requires a methodology 
and a tool for measuring YO activities. Instrumentation 
can be accomplished at one or more system levels, 
including application code, If0 libraries, file systems. 
device drivers, and hardware monitoring of VO channels 
and system bus. Instrumentation of each level can reveal 
disparate data. 

The workload presented to the YO subsystem is a 
combination of requests generated by both the application 
and operating system. Therefore. we chose to use device 
driver instrumentation of the hard disk sub-system, io 
capture both applications and system If0 activities. In 
addition. we used a set of experiments designed to aid in 
distinguishing the VO behaviors due to the operating 
system from those that are directly generated by the 
applications. Device driver instrumentation does require 
access to the operating system source code. which is 
generally hard to acquire from most vendors. Therefore, 
the experimental network of workstations (NOW) system, 
Beowulf [IJ. at NASA Goddard was selecttd as the 
platform for this study largely due to the availability of its 
operating system source code. Three typical ESS 
applications also from NASA provided the workload. 

This paper is organized as follows. Section 2 reviews 
some of the related work focusing on recent YO workload 
characterization studies conducted in the context of 
parallel systems. Section 3 describes the methodology 
used including the instrumentation technique, 
experiments, measurements and information sought. In 
section 4, the experimental results are presented and 
discussed. A s u m m q  and conclusions are given in 
section 5. 
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2. Related work 

There have been several previous studies. both 
experimental and theoretical, that have examined the 
issue of YO workload characterization. In this section we 
describe the related research, highlighting the objectives. 
methods, and results of those studies. 

The UO behavior of parallelized benchmarks on an 
Alliant multiprocessor emulator was examined in (21. 
They found the applications exhibited sequential UO 
characteristics. YO access rates and patterns were 
determined for a Cray YMP in [3] using C library 
instrumentation. This work categorized three general 
classes of YO access patterns: required (any YO at 
program start-up and termination), checkpoint (YO to 
Save minimum data for program restart), and data staging 
(YO needed when memory requirements are more than 
physical memory, e.&. paging). Pasquale and Polyzos in  
[ 4 ]  studied the static and dynamic YO Characteristics of 
scientific applications in a production environment on a 
Cray YMP. and concluded the intensive YO applications 
had a regular access pattern. The architectural 
requirements of eight parallel scientific applications were 
evaluated on nCube and Touchstone Delta machines in 
(51. rh is  study described the temporal patterns in VO 
accesses and rates. 4 parallel YO modeling and interface 
methodology is discussed in [6], along with the parallel 
YO requirements observed at the Argonne National Lab. 
In [7] system architecture issues concerning parallel YO 
on massively parallel processors (MPPs) are discussed. 
The need for comprehensive workload chara'cterization 
through instrumentation studies of multiple platforms and 
applications is emphasized. 

In [8] YO workload characteristics were presented for a 
parallel file system on an iPSU860 running parallel 
scientific applications in a multiprogramming production 
environment. File usage and size, read and write request 
sizes, request spacing in a file. access patterns, locality. 
and design implications for parallel file systems are 
presented. In a related study, [9] characterized control- 
parallel and data-parallel user-program UO on a CM-5. 
These studies of the CHARISMA project comprise a solid 
body of work in characterizing a file system's YO 
workload requiremenu. 

In [lo] the parallel YO workloads of four applications 
running on a parallel processor with the Vesta file system 
are characterized. This study used six WS 6000's 
connected with an SPn network (same network that is 
used !EM'S SI)! and SP2 machines) ~ q d  ~5: unified 
Tracing Environment (UTE) to perform the VO 
characterization which showed YO request sizes and 
rates, and data sharing characteristics. This study 
supported the YO Characterization results concerning 

request sizes and rates reponed in [&SI. In I l l ]  ;he 
instrumented versions of three scientific applications with 
high YO requirements were run.on an Intel Paragon XP/ 
S. This study characterized the parallel YO requirements 
and access patterns. In [I21 VanderLeest used 
instrumented YO library calls, kernel initiated tracing. and 
a bus analyzer IO study YO resource contention. 

The work in [8,11.12] are the most closely related 
efforts to ours. Our work differs from that of these 
studies in that we are using device driver instrumentation 
instead of YO library instrumentation. The hybrid 
instrumentation implemented in [12] is in  the form of a 
bus analyzer at the lowest level, and library 
instrumentation at the high end. That work was not 
conducted on parallel systems. nor did it examine 
scientific applications with parallel YO. 

3. Workload characterization methodology 

In this section we discuss the characterization method 
and the rationale behind the selections that we made. 
These elements include, the objectives of h e  study, the 
hardware platform selected, the applications used to 
provide the workload excitations, the method of 
monitoring the VO and collecting the measurements, the 
specific experiments that uere  performed, the data 
collected. and the information generated. 

3.1 Objectives 

Most VO workload characterization efforts have 
focused on measuring explicit YO requests to data files. 
ignoring system activities. Therefore, in this work we pay 
particular attention to the total workload which is 
ultimately presented to the UO subsystem. Such a 
workload consists of explicit application YO, pure 
systems activities, and system activities generated in 
response to the needs of the applications. We especially 
recognize the benefit of being able to characterize thjS 
total YO workload generated. as well as the elementary 
factors that give rise to this overail behavior. 
Accordingly we have captured trace file data on all of the 
system's iiO acriviry at ihe disk ievei. From the xi~lysis 
of this data we characterize the system's UO behavior 10 
aid in its understanding and in the development of more 
efficient systems. 

3.2 Platform 

In order to measure the YO activities at the physical 
level, we implemented disk drive instrumentation. 
Instrumenting disk device drivers required access 10 the 
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operating system source code from any target parallel 
platform that we considered: Since most such code is 
proprietary we found it very difficult to obtain. 
Consequently, we decided to use the experimental parallel 
testbed, Beowulf [I] ,  built at NASA Goddard. which uses 
the Linux operating system. The prototype Beowulf 
system, which we used, is a parallel workstation cluster 
with 16 Intel DX-4 100 MHz subsystems, each with 16 
MB of RAM, a 500 MB disk drive, and 16 KB of primary 
cache, connected with two parallel Ethernet networks. In 
addition to the Linux operating system, the Beowulf 
system has PVM for inter-processor communication, and 
can use PIOUS [13] as a parallel file system for 
coordinated VO activities. Since Linux’s GNU licensing 
policy allows public access to the source code, we were-- 
afforded the opportunity to develop and use device dnver 
instrumentation. This consideration was a prime 
motivator in the selection of this parallel system. 

3.3 Applications 

Three representative parallel applications were selected 
from the NASA ESS domain. These are a piece-wise 
parabolic method (PPM) code, a wavelet decomposition 
code, and an N-body code. The PPM code is an 
astrophysics application that solves Euler’s equations for 
compressible gas dynamics on a structured, logically 
rectangular grid 114). Our study used four 240x480 grids 
per processor. This code has been used primarily for 
computational astrophysics simulations, . such as 
supernova explosions, non-spherical accretion flows, and 
nova outbursts. 

Wavelet transformation codes are used extensively at 
NASA Goddard for ESS satellite imagery applications 
such as image registration and compression, of such 
images as from the Landsat-Thematic Mapper [ 151. The 
version of the code we used decomposed a 5 12x5 12 byte 
image. N-body simulations have been used to study a 
wide variety of dynamic astrophysical systems, ranging 
from small clusters of stars to galaxies and the formation 
of large-scale structures in the universe. Our N-body 
code uses an oct-tree algorithm with 8K particles per 
processor, which resuited in 303 miiiion totai paiiclc 
interactions [ 161. 

3.4 Instrumentation 

The parallel Yo performance data described and 
depicted in the following section was coilected using an 
inswmented disk device driver running on each of the 
workstation nodes. Each workstation’s D E  disk device 
driver was modified to capture trace data on all YO 
activity requested of the hard disk sub-system. The read 

and write handlers in the IDE disk device driver were 
instrumented to capture the requested level of 
instrumentation. All read or write requests sent to the 
disk drive generated a trace entry consisting of a time- 
stamp, the disk sector number requested, a flag indicating 
either a read or write request, and a count of the 
remaining VO requests to be processed. 

The YO instrumentation traces were buffered by the 
kernel message handling facility through the proc 
filesystem [I7]. and were eventually written to disk. 
Using the proc filesystem allowed the trace data to b e ,  
transported from kernel space into user memory in /proc, 
wirhout the need to develop and integrate additional 
specialized kernel code. Buffering the traces through the 
proc filesystem allowed the captured data to be stored 
quickly in memory, with the flexibility and ease of 
retrieving the data from what appeared to be a regular file 
in the proc filesystem. The level of instrumentation was 
controlled through the use of an ioctrl call. This allowed 
the instrumentation to be turned off and on, without the 
need to reboot the cluster with the desired instrumented or 
non- instrumented kernel. 

3.5 Experiments 

The instrumentation was turned on and trace file data 
wzs collected for YO requests during four basic 
experiments. The first consisted of gathering data while 
no user applications were running. This allowed us to 
measure the quiescent YO level. with which we could 
compare to the YO activity measured while applications 
were running and a user induced VO load was present. 
The next three experiments involved running each of the 
three applications described above, one at a time. These 
experiments were intended to reveal the individual 
contribution of each application to the overall behavior, 
The final experiment was to collect data while all three 
applications were running simultaneously. This 
experiment created an VO load resulting from a 
combination of different applications. to emulate a typical 
production environment. 

3.6 Metrics 

A number of m e h c s  were used in characterizing the 
VO in his study. including VO request size, the 
distribution of requests by disk sectors, and the average 
time between consecutive accesses to the same sector. 
Spaiial I x d i i y  infcm,adm wa developed from the 
distribution of requests by sector number, and temporal 
locality data was produced from. the measurements of 
time elapsed between accesses to a particular sector. 
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4. Workload characterization 

4.1 Baseline 

The fwst part of our study focused on the analysis of 
YO activity while no user applications were running. 
Figure 1 covers this period of inactivity and shows YO 
accesses concentrated around a few sectors. which is 
consistent with logging and table lookup activities that are 
normally part of routine kernel work occumng all of the 
time. These I/O requests can be seen as horizontal lines. 
The predominate YO request size observed during this 
period is 1KB [IS]. A few instances of small multiples of 
1KB requests were also seen. This I K B  request size 
matches the disk systems block size of IKB, and is 
indicative of small YO requests generating YO msfers 
of the smallest possible physical request size. 

-*I  t 8 ; .  . a  . a  ., J ...a ., ...I,. .. . , a .  8 .  ,, 
. .  ' I  * mrm 

. . ... . ... . ... . ... . . 
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Figure 1. VO Requests (baseline) 

4.2 Single applications 

Piece-wise parabolic method: The YO during this 
application is relatively low with no paging activity 
occurring while this program is running, except briefly 
toward the end. As can seen in Figure 2. the paging 
activity is denoted by a 4KB request at approximately 230 
seconds from the beginning of the execution time. The 
1KE block 2/0 requests are very prevalent. consistent 
with kernel activity, low user program YO demand, and 
small infrequent requests. 
Wavelet: Figure 3 presents the YO activity that was 
observed while the wavelet decomposition application 
was running. In Figure 3, a frequent request size of ~ K B  
can be observed. which indicates a high rate of paging. 
m e  paging requirements of the wavelet program are due 

0 3 I@ E4 300 
11- tn - 

Figure 2. Request Size (PPM) 

to the large program space and image data requirements. 
A spike of If0 activity occurs at approximately 50 
seconds into the execution. This is generated by the 
higher request sizes occumng while the data file is being 
read. Requests approaching 16 KB are obsewed during 

i i I I 

uo loo Ei9 Ir) 
11- in lrrd 

Figure 3. Request Size (wavelet) 

this period, and are a result of the 16 KB cache on 
Beowuif. As a stream of data is being read at this point of 
execution, cache is repeatedly filled with the new data. 
Interference from system activities keep the request size 
from reaching and maintaining the full 16 KB cache size. 
A lull in the YO activity is the next significant feature of 

undenvay. Note that there are few page requeso (at 4KB) 
during this period. This is caused by system memoQ' 
maintaining the working set of inswctions and data, 
without the previous higher need for new data and 

.L ulis application. ifidicating h.at k m m p ~ t k d  phase is 

744 



instmctions. 
N-body: In Figure 4 the consistent 1 KB block YO is 
visible. with more 2 KB requests and a few page swaps 
(or 4KB requests) than occumd durjng PPM. The higher 
computational requirements of the N-body problem cause 
more frequent page faults than PPM, to maintain the 
working set, but the overall activity is obviously much 
less than that of the wavelet program with its large dam 
requests. 
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Figure 4. Request Size (N-Body) 
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3.3 Combined applications 

Figures 5 and 6 show the resultant YO from running all 
three applications simultaneously. The resultant YO 
request sizes shown in Figure 5 reflect the simultaneous 
demand on the YO by all three applications. The 1 KB 

1 

2. 

0 IOD m m m y .  m m  
11- u - 

Figure 5. Request Site (combined) 

Baseline 

PPM 

Wavelet 

requests are maintained throughout this period. with a 
much higher occurrence of 4 KB requests. reflecting the 
greartr load. The. dramatic increase in request site at 
approximately 50 seconds. is primarily due to the image 
being read in the wavelet application, but the combined 
effect of the applications have driven the total request 
sizes much higher than when the applications were run 
independently. Request sizes in the 16 KB to 32 KB 
range shown in Figure 5 arc attributed to an increased YO 
buffer size when the wavelet data file is read. 
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Figure 6. VO Requests (combined) 

Figure 6 also shows a correspondingly higher amount 
of request activity, primarily in the lower sector numbers. 
The clumping of requests seen in Figure 6 matches the 
periods of greater request activity seen in Figure 5. The 
distribution of YO requests between reads and writes that 
occurred during each application (average per disk) and 
during 2000 seconds of baseline inactivity is shown in 
Table 1. System and instrumentation logging account for 
h e  almost exclusive amount of writes that was measured 

I 1 I I 

Table 1. UO Requesb 
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in all but the wavelet experiment (Note: YO 
instrumentation did not measurably change the execution 
time of any of the applications.) The difference in the 
relative percentages between reads and writes for the 
wavelet application is because this program is the only one 
that has significant input data, in this case from its 
imagery data file. n e  overall low request activity in the 
PPM and N-body applications. and the low percentage of 
reads, is a result of both of these programs being 
simulations with no input data, with and only short 
statistical summaries being written. 
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Figure 7. Spatial Locality (combined) 

Figure 7 shows the spatial locality as a percentage of 
UO requests occurring within a band of seciors. In this 
figure, sectors have been combined into bands of lOOK 
each. The higher incidence of UO activity in the lower 

0 lllxm rmgo umm - IrQ 1.- 

Figure 8. Temporal Locality (combined) 
ktp m d m  d di* 

sector numbers is caused by the user programs and data. 
swap file space, and kernel file data mainly residing in 
these locations on the disk. Figure 8 shows temparal 
locality as a characterization derived from data also 
collected while running the combined application 
experiment. Temporal locality is expressed as the 
frequency of accesses (per second) to the same sector on 
disk. These access frequencies were averaged over the 
700 seconds required to run the combined experiment. 
Figure 8 also shows most of the YO occurred at the lower 
sector numbers. The most frequently accessed sector 
location was approximately 45000, and the next most 
fiequent at just under 400000. 

5. Summary and conclusions 

This study has aimed at characterizing the parallel UO 
workload generated by some of NASA's ESS 
applications. This was accomplished by instrumenting 
the disk device driver and capturing vace information on 
the total load of the emulated production environment as 
observed by the UO subsystem. Experiments were 
conducted to reveal the elementary conuibutions of the 
individual applications, system activities, and the 
combined characteristics of a multiprogramming load 
with several applications running concurrently. 

The proposed instrumentation technique has been able 
to identify different I/O activities based on the observed 
request sizes. that fell into three primary categories. First, 
small requests which were observed as 1KB physical 
requests. Second, paging activities which were observed 
as 4 KB requests. Third, large YO requests distinguished 
by sizes approaching multiples of 16 KB, indicating most 
of the 16 KB cache data was being replaced. 

UO attributes and request patterns were monitored and 
characterized. It was shown that in the absence of 
applications, system activities of small request sizes 
appear at low and high sector numbers due to system 
logging. Intensive data set manipulation applications 
such as the wavelet image processing code were 
distinguished with heavy paging in the beginning of the 
application to build the working set of the code and large 
data silZicitires. x well a .;*.it$ Iiiii-ge exp!ici: request sites 
approaching multiple cache block size, when the image 
data was read. Limited paging activities still occurred to 
maintain the working set, followed by a heavier activity 
toward the end of the application run. Both N-body and 
PPM are simulation codes, and have shown behaviors that 
are simiiar. in generai. ~ e s e  two codes have v e q  iimited 
YO activities, most of which is implicit. The explicit Yo 
is due to writing the final simulation results into output 
files. A very small amount of paging activity was 

With the ability IO closely observe I/O activities, the 
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observed as a result of processing in these applications. 
In addition to the request size characteristics, the ESS 

applications' VO exhibited substantial locality propenjes. 
The spatial locality of the combined workload, almost 
follows the 10-90 rule. Temporal locality analysis 
revealed some hot spots on the disk. Also, a reladvely 
high ratio of writes, as compared to other domain 
applications, were observed in the ESS applicadons. 
particularly in wavelet. Our next step is to integrate these 
data into a parameter set that can be used for system 
design and tuning of parallel systems and applications. 
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Abstract 

Sparse matrix computations have many important industrial applications and are characterized 

by large volumes of data. Due to the lagging input/output (VO) technology, compared to processor 

technology, the negative impact of inputloutput could be challenging to the overall performance of 

such applications. In this work, we empirically investigate the performance of typical parallel file 

system options for performing parallel VO operations m sparse matrix applications and select the best 

suited one for this application. We introduce a dynamic scheduling method to M e r  hide I/O 

latency. We also investigate the impact of parallel VO on the overall performance of sparse-matrix 

vector multiplications. 

Our experimental results using the htel Paragon and standard matrix data will show that, by 

using our technique, tangible performance gains can be attained beyond what parallel I/O system calls 

alone may offer. For some data sets, it is possible to significantly ease the I/O bottleneck through 

latency hiding and amortization over increased computations to a limit that can preserve the scalability 

characteristics of the computational activities. The results will also empirically shed some light on 

the pros and cons associated with the Merent parallel file system calls supported by modern parallel 

systems, such as the htel  Paragon. 

1. Introduction 

A matrix is cded sparse i fa  relatively d number of the matrix elements are non-zero [ 121. 

Sparse matrices are very efficient for accommodating a variety of applications, including engineering, 

medical, and military data. Commonly performed matrix computations include: eigenvalues and 

eigenvectors computations, matrix multiplication, or solving systems of linear equations. Cheung and 
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Reeves [l] categorize Sparse Matrix Applications (SMA) into three hdamental  classes: 1) SMA 

with regular sparse patterns, m which matrices have a regular structure, such as banded, trian-dar, 

or (block) diagonal; 2) SMA with random sparse patterns; 3) Dense applications with sparse 

computation, in which, although dense matrices are used, the problem deals only with a small, 

limited part of the data. We wiIl focus on the second category, considered as the most general case. 

A number of sparse matrix compression formats exist. It is generally acknowledged that it is more 

efficient to deal with matrices in the compressed format for at least two reasons: 1) saving disk 

storage and memory space; and 2) saving execution time, as only non-zero elements participate in 

computations. 

We empirically investigate the performance of typical parallel file system options for 

performing parallel VO operations in sparse matrix applications. Nitzberg and Fineberg [15] 

presented an overview of raw UO bandwidth of typical parallel systems using synthetic workloads, 

including the Paragon. Our investigations go beyond the study of the raw VO performance, to 

mchde the interaction of VO with scalable computations. In specific, we study the impact of UO on 

the overall performance of typical sparse matrix computations. 

One successll way to enlarge the bandwidth of VO systems is to access the data before they 

are actually required by the processing nodes in computations. The technique is generally known as 

prefetching, and its application is strictly dependent on the application access patterns. Recently, 

Arunachalam, Choudhary, and Rullman [An1961 describe the design and implementation of a 

prefetching strategy and provide measurements and evaluation of the file system with and without the 

prefetching capability. They found that, by using prefetching, a maximum speedup of7.7 could be 

attained for 8 processing nodes and 8 VO nodes. Even if we also use prefetchg as a way of 
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boosting YO bandwidth, some important aspects differentiate our work than the one performed by 

Arunachalam et al. Thus instead ofusing variable delays as simulated load-balanced computations, 

we use real applications, including one with inherent load-imbalances, such as the sparse matrix- 

vector multiplication. Therefore, our research goal is to go beyond just measuring system's 

capabilities, to test our VO bandwidth improving solutions and the response of the Paragon PFS in 

complex real-life situations. We introduce techniques and methods to sigmficantly ease the VO 

bottleneck through latency hiding and load balancing to a limit that can preserve the scalability 

characteristics of the computations. Also, we base most of our experiments on the M-ASYNC file 

access mode, proven to yield best performance [ 15,7, 161 and because of its suitability for MIMD- 

type implementations. On the other hand, Arunachalam et al. based their tests on M-RECORD, 

which is most suitable for SIMD implementations. 

The remainder of this paper is st~~ctured as foIlows. In Section 2, we present the two Sparse 

Matrix Applications (SMA) (compression and multiplication) used to study the performance of the 

VO system In Section 3, we describe our experimental testbed, the parallel platform and the matrix 

data set. In Section 4, we present the Paragon PFS file access modes and our YO latency hiding 

methods. Finally, in Sections 5 and 6 we present our experimental results and conchlsions, 

respectively. 

2. Sparse Matrix Applications 

Our purpose is to find appropriate solutions and techniques to enhance the VO performance 

on parallel computers, for applications such as sparse matrix computations. Therefore, we 

investigated the VO bottleneck for two typical Sparse Matrix Applications (SMA): sparse matrix 
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compression and sparse matrk-dense vector multiplication. 

2.1 Sparse matrix compression 

The quality of compression formats should be judged by considering a number of criteria, 

including: the compression ratio (ie. the ratio between the sizes of the matrix in the compressed and 

in the extended format, respectively), the availability of compressed matrix elements to participate 

in efficient algorithmic constructions, and the possibility of monifling, extending, and regenerating 

the original matrix Some of the most used sparse matrix compression techniques include the Scalar 

m A C K  [3,10, 111, HorowitZ [5,9],  Vector ITPACK [ 121, ITPLUS [4, 101, and ITPER (ITPACK 

permuted blocks) [6, IO]. There is no globally 

accepted best storage technique. The selection of 
2 0 5 0 0  

8 3 0 7 0  I 
I the compression format depends on the actual A = I O  6 2 0 1 

distriiution of non-zero elements within the matrix 

and on the application requirements. In our 

9 0 0 1 0  

10 7 0 0 2 1  

eqeriments,weusedScalarITPACKcompression ~ [ n z ] = [ 2  5 8 3 7 6 2 1 9 1 7 21 

ju[nz]=[l 3 1 2 4 2 3 5 1 4 2 5 1  format, given its suitability for general sparse 

iu[N+l]=[l 3 6 9 11 1 3 1  
pattern matrices. This compression technique yields 

Figure 1. Example illustrating scalar good compression ratio and enables efficient 

algorithmic constructions. lTPACK format 

We *ate the Scalar ITPACK format through an example m Figure 1, in case of a matrix 

stored row-wise. It stores values and infomation regarding the position within the matrix of the non- 

zero elements mto three vectors, as follows:  vector stores non-zero values; Yd vector stores their 
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column indices; and 3'd vector stores indices of elements in 1" and Znd vectors corresponding to 

beginning of rows. 

2.2 Sparse matrix-dense vector multiplication 

Additionally fiom the sparse matrix compression, we used the sparse matrix-dense vector 

multiplication as scalable computation. The algorithm multiplies matrix elements compressed 

Procedure 2: multiplication 

INPUT: 
Am, M] - matrix compacted according to the scalar ITPACK format: 

a[nz] - contains all nz non-zero values ; 
ja[nz] - contains the corresponding column indexes of all the elements in vector a[ 1; 
ia(N+l] - contains the indices of elements in vector a[ ] that correspond to new rows. 

xFr] - an M x 1 input vector; 

OUTPUT: 
y M  - an N x 1 output vector. 

ALGORITHM: 
for ( i = l , N )  

tern-; 
for ( k = ia [i], ia[i+l] - 1 ) 

endfor 
y [ i] =temp; 

temp = temp + ap] * x [ jap]]; 

endfor 

Figure 2: Sparse matrix-dense vector multiplication algorithm 

according to the Scalar ITPACK compression scheme (Figure 2) and it is considered a typical sparse 

matrix multiplication scheme [6] .  
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3. Experimental testbed 

3.1 The Paragon system 

Our experiments were performed on an Intel Paragon parallel computer with 64 processing 

nodes, among whom 56 are compute nodes. Each node is based on an Intel i860 processor, having 

at least 16 MBytes of RAM on-board The underlying topology of this MIMD machine is a mesh that 

enables up to 160 MByteds of inter-node communications bandwidth. Large files can be stored on 

a Parallel File System (PFS), organized as a two disks system, each of them a RAID 3. File contents 

are striped over disks with stripe sizes equal to 64 KBytes. Conceptually, the system combines h e -  

grained parallelism within each RAID 3 with coarse-grained parallelism at PFS level. At the concrete 

level, the system represents a multi-level striping implementation to achieve a better distniution of 

load over YO nodes. We capture m Figure 3 the hierarchical structure of a Paragon PFS with two 

YO nodes each one controlling a disk system. 

I 
DISK 0 DISK 1 Ir I 

Figure 3. Hierarchical structure of a Paragon PFS with two disk systems 

3.2 The matrix data 

In our experiments, we use several sparse matrices selected fiom the Harwell-Boeing sparse 

matrix collection [2,3]. We summarize the main characteristics of these matrices in Table 1. The 
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Harweli-Boeing collection is a set of benchmark matrices collected &om challenging practical 

applications of typical computational problems. Both the User's Guide and the collection are available 

on the Internet fiee of charge. 

Table 1. Statistical data of sparse matrices selected from the Harwell-Boehg collection 

Name 

ORANI 678 

PSMIGR 1 

BCSSTK28 

Type Order Non-zero's Sparsity 

Unsymmetric 2529 90158 0.0 14 

Unsymmetric, mostly block-diagonal 3 140 543 162 0.055 

Svmmetric 4410 2 19024 0.011 

Table 2. PFS fde access modes main characteristics 

File pointer 

independent, 

multiple 

single, 
shared 

File access policy 

random access 

first-come. first-served basis 

atomicity ensured 

first-come, first-served basis 

access by order of issuing the 

call 

M_uMx 

M-LOG 

M-SYNC 

M - RECORD 

M - GLOBAL 

M-ASYNC 

single, 

shared 

multiple 

single, 
shared 

independent, 

multiple 

synchronized access by node 

number 

concurrent access uppeunng to 

have been done by node number 

data read by one node and 

broadcast to all others 

random, concurrent access 

non-atomic writes 

Degree of 

synchronization 

small 

medium 

small 

Typical 

applications 

redwrite on 

disjoint areas 

writing log files 

round-robin data 

redwrite 

more efficient 

round-robin data 

redwrite 

reading shared 

data 

complete 

flexibility of 

implementation 
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4. Parallel File System (PFS) fde access modes and YO latency hiding 

4.1 Supported PFS file access modes on an Intel Paragon 

The Intel Paragon supports the following PFS file access modes: M-UNIX, M - LOG, 

M-SYNC, M - RECORD, M-GLOBAL, and M-ASYNC. The main differences consist of the way 

the contents of the file pointer is maintained and the degree of file access synchronization. 

in Table 2, we summarize the main characteristics of the PFS file access modes. We have 

assumed the following interpretation for the degrees of inter-node synchronization: 

1) small - only open and close calls are synchronizing; 

2) medium - additionally, calls like fseek and eseek are synchronizing; 

3) high - most or all calls are synchronizing, including the readwrite calls. 

By synchronizing calls we understand two things. First, corresponding syncronizing calls 

have to exist m the code run by all compute nodes in a compute partition. Second, the system 

executes them m some particular way. Thus, if calls such as fopen, fclose, fseek, or eseek are 

involved, d processors execute them at the same time, performing the same action (such as moving 

the file pointer to a same file location). On the other hand, Zfiead orfivrite calls are involved, the 

calls are scheduled based on node number and the operations are performed at file locations @en 

by the node number and size of the read/write call. 

Some of the file access modes have some typical applications. For example, the M-LOG 

mode is most suitable for creating and maintaining log files, whereas M-GLOBAL has its best 

application in implementing a variation of collective read of a file, when all nodes are reading the 

same information f?om disk, but only one node is actually performing the read followed by a 

broadcast of the read data through inter-node message-passing. Our implementations are aimed 



at Setting a f%ir basis of performance comparison for all these modes rather than providing the most 

suitable application for each of the parallel file access modes. A complete description of the PFS 

file access modes can be found in the Paragon User's Guide manual [ 141. 

The sparse matrices are uncompressed and resident on disk. Before compression and/or 

computations, such as matrix umhplication, are performed, data have to be read into main memory, 

Some of the PFS file access modes (M - LOG, M-SYNC, M-RECORD, and M-GLOBAL,) make 

either all nodes truly share the same pointer or make the seek operations transparent to the user 

(M-RECORD). All of these file access modes, with the exception of M-LOG, offer some means 

of synchronizing the calling nodes. M LOG is designed for implementing log files, therefore the 

access to the file is truly on a first-come, first-served basis, with single shared file pointer. Because 

in our case the nodes have to read specific data fiom disk rather than to write on it, some file 

pointer alignment information must be exchanged by the nodes. Each node has to be aware of the 

index of the rows it processes to ensure the correctness of the results. In the case of M-SYNC and 

M-RECORD file access modes, the access to the file is done by node number. Thus, for M-SYNC 

accessing nodes are trUty synchronized by node number. M-RECORD is a special case: even if the 

file pomter is distributed, compute nodes do not have fidl control on the contents of the file pointer 

and fkek and eseek calls are synchronizing. Performing read-write is similar to M-SYNC, but the 

access of nodes to the file just looks to have been by done by node number, but it actually is on a 

first-come, first-served basis. To have this opportunity, additional constraints are imposed, such 

that each node must perform the same type of operation in a readwrite session and use the same 

b d e r  length. For some applications, in which the file size is not evenly divisible by the number of 

processors multiplied by the read-block size, errors may occur if these restrictions are not met and 
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make M - RECORD mode impractical One way of s o h g  this problem of incompatibility between 

the PFS characteristics and the application requirements is to artificially enlarge the size of the file 

such that, in the read session, all nodes are fetching the same number of bytes. This anomaly is 

corrected in the computations phase when fudge data are simply discarded. 

In the case of M-UNIX and M-ASYNC modes, multiple file pointers have to be 

appropriately maintained. As no synchronization restrictions are imposed, both these two file access 

modes enable flexible scheduling of file access and. therefore, they support MIMD-type 

implementations. 

4.2 Additional latency hiding 

A typical way of hiding the VO latency is the use of asynchronous read. Modem MlMD 

machines have dedicated hardware facilities for achieving the message passing task and for 

interfacing the VO devices. This architectural concept enables processing nodes to carry on their 

computations without being directly involved in communications and VO tasks. Ideally, the fU 

beneiit f?om an asynchronous'V0 call is attained when the VO operation has the same length as the 

computations perfoxmed between two consecutive asynchronous calls. In such a case. YO is lily 

overlapped with computations. Unfortunately, this is not always easy to reach in practice, and 

application programs should make every effort to achieve the maximum possible degree of 

overlapping. 

Load-balancing is an important issue m computations and VO as well. The structure of the 

Paragon PFS itself contributes decisively at ensuring an even distribution of load over VO nodes. 

However, especdy for a PFS with a large number of VO nodes, the completion of some YO calls 
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can be delayed primarily because the PFS is a shared resource with other users. Therefore, some 

compute nodes that posted the delayed calls can experience significant load imbalances. Moreover. 

computations themselves can contribute and expand the existing load-imbalance. Thus, we perform 

two common computations with sparse matrices: compression and the multiplication with a variable 

number of vectors. As opposed to the compression, that does not raise special load-balancing 

problems, the multiplication is typically a good example of a potential source for load-imbalances. 

Additionally, the size of the multiplication and its associated challenges can be easily scaled by 

changing the number of multiplying vectors. 

We compare two approaches for allocating the data to compute nodes to solve the parallel 

sparse matrix compression and multiplication: 

(1) each node generates, based on its node index, the rows it reads. Thus, the fist node reads the 

first n rows, the second node reads the next n, and so on. At the next read cycle, the fist node 

reads rows: N*n, ..., (N+f) *n - I. As a rule, node j reads within read cycle i (ifit is the last read 

cycle, some nodes may not read at a 4  and one node may read less) rows: N*i+j)*n, ..., 

(iY*i+/+Z) %-1. Thus, each node reads disjoint areas fiom the file. The physical access to the file 

is imposed by the selected PFS file access mode. The advantages are the following: the method 

enables large size read sessions and the nodes extract the information about the read data based on 

their node index. The main disadvantage of this method is that it does not attempt to evenly 

distribute the load onto processing nodes. Based on the actual distribution of the data elements, 

some nodes may take longer than others to process a particular subset of the matrix elements. We 

call this approach, that is mainly a static allocation, the worker-worker approach (W-w). This 

approach is aimed at sohing problems with no or with insignrficant load-imbalances. 
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(2) each node informs the major node when it is able to process new data (master-worker 

approach M-W). As a principle, any worker that is ready to accept new data, sends a READY 

message to the master node. If'the master node, that manages the allocation of rows to workers, 

Stin has unprocessed rows to allocate, sends back a GO message in which includes the starting row 

index and the number of allocated rows. Once the EOF is reached, the master node broadcasts a 

STOP message. The algorithm efficiently mixes asynchronous message passing and YO calls with 

computations for best performance. We present both the master and the corresponding worker 

algorithms m Figure 4. This algorithm is a more elaborate alternative for potential sources of load- 

imbalances. 

One difference between the two approaches is the need for a coordinating master node in 

the second approach. In the first approach, the indices of rows fetched and processed by each 

compute node can be determined according to the node number of each processor. In a dynamic 

allocation, a coordinator is neceSSary to arbitrate requests for more work fiom compute nodes and 

keep track ofthe allocated row mdices and ofthe remaining work. A master node can be a service 

node, vclhile the workers are compute nodes. The advantage of this procedure is that any delayed 

node is not delaying the whole process. As the I/O calls and the associated computations generally 

take longer to complete than the short message inter-change, the message passing that referees the 

data allocation is carried on m the background. Therefore, there is no measurable penalty paid for 

the communication between processing nodes (workers) and the managing node (master). 

Whenever a master node is invoked in coordinating a parallel application, the concern that the 

master node may become a serious bottleneck is raised. In this situation, the load associated with 

the master node is minor as compared to the load allocated to compute nodes that deal both with 
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Algorithm: master 
compute the number of VO reads 
for (all VO reads) 

receive a READY message from a worker 
identify the node that sent the READY message 
send back GO message with row identifiers 

endfor 
for (d processing nodes) 

receive a READY message from a worker 
identify the node that sent the READY message 
send back STOP message with row identifiers 

endfor 

Algorithm: woricer 
post an asynchronous receive for a STOP message 
read asynchronously the first set of data based on its node index 
post an asynchronous receive GO message 
send READY message to master node 
Terminate=FALSE 
while not (Terminate) 

for ( : ; 1 
if GO message received &om master node 

post a new asynchronous receive GO message 
send READY message to master node 
break &om for loop 

endif 
if STOP message received 

cancel GO receive message 
TerminatFTRUE 
break fiom for loop 

endif 
endfor 
wait until previous YO read ends 
if not (Terminate) 

endif 
perform computations on data previously read from disk 

post a new asynchronous read from disk for next compute iteration 

endwhile 

Figure 4. Dynamic allocation of YO and computations 

YO and computational tasks. Therefore, the major node is not impeding on the scalability of the 

overall execution. To implement the dynamic (or Master-Worker) allocation, two memory b a e r s  
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may be awed. At any moment m the idkite for loop, while one buffer is being filled with data &om 

disk, the other one, already containing data, is being used in the computations phase. 

5. Experimental results 

5.1 Performance measurements of the PFS f i e  access modes 

In this section, we compare the performance of the PFS file access modes available on an 

Intel Paragon. A short preview at these results appeared in the Proceedings of the DCC'96 [7]. 

Suppose we solve the problem of compressing a sparse matrix, resident in extended format 

on the hard disk. Computation and VO operations must be performed by a number of processors 

grouped into a computing partition. The compression and, also, other computations, like the 

matrix-vector multiplication, can be embedded in the dynamic allocation algorithm presented in 

Figure 4 as the computation taking place at the worker node leveL 

The purpose of our experiments is to show how computations and VO intensive applications 

can be handled efficiently. .Therefore, we tested in our experiments all possible PFS file access 

modes, and we compared their achieved performance. We respected some principles in designing 

the compression process for implementations involving each of the PFS file access modes: 

1) Each node reads an integer number of rows, as the compression is row-oriented. This generally 

contradicts the constraint to read in integer number of stripe-sizes to achieve high performance. 

We compromised on these issues, in the sense that each node reads at one time a number of rows 

. x r h ~ e a  m n m h \ ; n a A  C;IP ;e n l r r n a ~  +.. +L r.,.+:mnl r n n A  C;VP 
WUVPCI VVLUUUA~U 3y.k ~ L U J C D L  LU L U ~  up~uuai i r a u  a=-. 

2) Asynchronous message passing and asynchronous YO reads are efficiently used. They enable 
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the computations to occur concurrently with inter-node communications and parallel YO. 

In Figure 5 ,  we present our results regarding the comparative performance evaluation of 

the PFS file access modes. We have used 4 Merent read-sizes, multiple of the stripe-size (64 

mytes): 1 (64 KBytes), 2 (128 KBytes), 4 (256 KBytes), and 6 (384 KBytes) stripe-sizes. Note 

that our system has 2 YO nodes. The best overall performance is obtained with the M-ASYNC 

PFS file access mode (Figure 5). The explanation is that all restrictions that apply to the other PFS 

file access modes are lifted in this case. Good performance is achieved with M-GLOBAL with a 

read-size equal to a stripe-size (Figure Sa). The explanation is that only one node is actually 

reading the data. followed by the data replication on the inter-node communications network. thus 

avoiding all contentions in accessing the disk. As each node processes the same amount of data 

during one read cycle, the actual read-size is the basic read-size multiplied by the number of 

processors. However, this feature becomes an aggravating issue once the read-size increases, as 

it tends to trigger paging, thus diminishing the overall performance. This behavior is clearly 

&strated when the read sizes are equal to multiple stripe-sizes (Figure 5 c, d). File access with 

M-SYNC and M-LOG is h i w y  synchronized. The reading with M-SYNC is done by node 

number, while with M - LOG is performed on a first-come, first-served basis. Therefore, the degree 

of concurrency allowed is much smaller. However, M-SYNC performs better than M-LOG, 

because it enables a higher degree of concurrent access of nodes to the file. Similarly to M-LOG, 

file access with M-UNIX is also performed on a first-come, first-served basis. Not surprisin&, its 

performance is the worse compared to all other PFS file access modes, because it allows the least 

concurrency to file access. Worth noting that a sigdicant penalty is paid because of the existence 

of mdhple file pointers, that have to be maintained &iividually, compared to the single, shared file 
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Figure 5. Compression and associated UO execution time for matrix PSMIGR 1 
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pointer modes. M - RECORD also yields better performance than M-SYNC because it allows a 

higher degree of concurrent access to the file. M-ASYNC and M-UNIX are very similar in some 

aspects, but they produce completely different results because of the lack of constraints in the 

M-ASYNC case. A dramatic improvement is recorded for the M-ASYNC in the time to move the 

file pointer. Thus, the total time to move the file pointer for the M-UNIX ranges between 3.7 and 

16.7 seconds for the studied cases, representing kom less than 35% to up to more than 75% of the 

whole YO cost. On the other hand, the same operation takes only tens of a second for 

implementations using the M - ASYNC PFS file access mode and is negligible as compared to the 

entire YO cost (less than 1% of the entire YO cost). To explain more thoroughly the way timing 

results are made up, m Figure 6 we show the compression time results based on the M-ASYNC 

mode detailed by YO and processing components for both M-UNIX and M-ASYNC modes. An 

estimation of the overall execution time is: 

For a read-block size equal to 64 KBytes, the read time is completely above the computations time. 

Therefore, the overall execution time is imposed by the I/O performance. For a read-block size 

equal to 384 KBytes and M - ASYNC mode, the overall results scale for a small number of 

processors (y s 2), but &e IiO time becomes preponderant for iarge number of processors. This 

behavior is due to the unscalable characteristics of the PFS that diminishes overall performance for 

indlicient amounts of computations. The charts emphasize the scalability of the computation as 

compared to the saturation of the YO performance. In Figure 6, we also illustrate another 

interesting aspect: the cost of seeking overwhelms the cost for read for M-UNIX and large number 
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of processors. 

5.2 Effect of the additional YO latency hiding 

As previously shown, the VO bottleneck impacts directly on the overall performance. 

Therefore, the application designer should use any available techniques that speed up the VO and/or 

hide its latency. In Section 4.2, we present a method that uses dynamic allocation (the Master- 

Worker approach) as a meaningfid attempt to achieve a better distribution of the work over 

compute and VO nodes. The method aims at avoiding the ide times of both compute and YO 

nodes due to any unevenness of the data distribution. In Figure 7, we compare the performance 

obtained with the static and dynamic allocations for Merent read sizes. We show that the dynamic 

allocation produces better performance m aIl6 cases. Once again, the improvements are not based 

on a fister VO, but on a better use of allocations. In this section, our tests are based on operations, 

such as the VO and compression, that, normally, do not raise special problems of load-balancing. 

However, as the load on YO can generate fiom other sources than our job as well, the dynamic 

allocation proves to be usem In Table 3, we capture some statistical data on this improvement. 

The measured improvement due to dynamic allocation (the Master-Worker approach) is up to 

19.79 %. In this case, load-balancing is aimed at smoothing sudden load-unevenness due to external 

sources rather than internal ones, therefore it helps prevent loss of performance due to random 

rather that persistent and systematic stimuli. We expect this technique to have an even larger and 

more conclusive impact when allocated loads have various weights, such as some types of 

computations invohhg sparse matrices. We M e r  address this issue in Section 5.3. 
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Figure 7. Comparison between the static and the dynamic allocations 
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Increase in 

performance 

Highest [%] 

Lowest [%] 

Table 3. Improvement of the performance with the dynamic allocation vs. static allocation 

Read sizes 

64 KB 128KB 256KB 384KB 512KB 640KB 

15.97 6.49 7.53 10.25 5.04 19.79 

1.5 0.4 0.15 0 1.16 0.16 

5.3 Effect of the multiplication size on scalability and amortization of UO 

As we previously stated, computations with high degree of inherent concurrency scale we4 

compared to VO operations. To study the effect of the size of the problem on the overall 

performance of computations and VO. we have increased the complexity of the computations part. 

Thus, we have combined the compression of a sparse matrix with the multiplication of this matrix 

(in the compressed format) with a number of dense vectors. The sparse matrix-dense vector 

multxplication has two interesting effects. First, the operation itself raises load balancing problems, 

as the computation load depends on the number of non-zero elements contained in each amount of 

data read fiom disk by each node. Depending on the distribution of non-zeros per each row. the 

variations of load can become non-negligible. Second, by varying the number of vectors, we can 

conveniently m o w  the ratio between the amounts of computations and I/O. 

In Figure 8, we capture the interrelation among overall scalability, L’O, and amortization of 

VO with increased computations. As expected, the overall results scale well as long as the scalable 

computation part surpasses the VO part. Each of the curves in Figure 8 has a scalable segment and 

a saturated one. One interesting result is that the amortization is achieved at an extremely 

reasonable Size of the multiplication problem (vectors2 100). This is the direct outcome fiom the 
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i with scalable computations, there exists 

some size of the scalable operation for Figure 8. h p a c t  of the Problem size On 
scalability and YO amortization 

which the overall results become scalable. 

Read size: 128 KB 

m r r  0- Q W R  

Read size: 128 KB 

Figure 9. Structure of the overall results for compression and multiplication 

To show more cieariy how these resuits were obtained, in Figure 9 we detail the 

components of the overall execution time. Thus, for 25 multiplying vectors, the time to perform 
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computations is above the time for L’O only for 4 compute nodes or less. As the amomt of 

computations increases ( 100 vectors), the scalable computations cost surpasses the VO cost for the 

entire range of 10 compute nodes. Thus, overall scalable performance can be obtained when an 

unscalable operation, such as VO, can yield enough work to overlap with and completely hide 

behind the scalable computations. Therefore, when two operations, among whom one is scalable 

and the other one is unscalable and whose costs can overlap, pass the scalable characteristics of the 

overwhelming operation cost to the entire process for a wide range of compute nodes. 

To generate the results m Figure 8, 

we used the dynamic allocation. We show 

once again a comparison between the two 

possible types of allocation, given the 

increased interest due to the potential 

load-balancing problems embedded into 

the sparse matrix multiplication. In Figure 

10, we plot the speed up results for YO, 

compression, and multiplication with 125 

vectors with both the static and dynamic 

Figure 10. Comparison of the static (w-w) and 
dynamic (m-w) allocations of YO, compression and 
multiplication of I25 vectors for a 3140 x 3140 sparse 
matrix 

allocations. In addition to what was presented m Figure 6, the multiplication itself involves a 

random amount of computations. Therefore, variations of processor behavior may occur, and the 

dynamic allocation is aimed at covering the possible node delays. The differences in speed up 

obtaicd *whg the stztk md djnax.uk a h a t i o n s  are mere obvious fnr !arger nlmher of processors 

because load-imbalances have a larger relative effect for smaller absolute work loads. The dynamic 
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(m-w) allocation yields a speed up of 9.405 for 10 nodes, compared to a speed up of 7.921 

obtained with the static (w-w) allocation for the same number of processing elements. Figure 10 

shows that, to a c h e  high performance, it is not enough to make the scalable operation 

preponderant, but also to ensure a high degree of scalability to the computations themselves by 

appropriately choosing the load-balancing techniques according to the problem and execution 

model. 

6. Conclusions 

We have studied the effect of the YO bottleneck on the performance of some basic sparse 

Our experiments were matrix operations, such as the compression and the multiplication. 

performed on an Intel Paragon MIMD machine. In these experiments, we used benchmark 

matrices selected &om the Harwell-Boeing collection. We compared the performance of all 

applicable PFS file access modes and we showed empirically the performance characteristics of each 

of them m real-life applications. It was particularly shown that, although M-GLOBAL does better 

for smaller collective reads, due to the ease in managing the single file pointer, it results in loss of 

performance m larger read sizes, due to local memory size constraints. M-ASYNC, on the other 

hand, can schedule the multiple file pointers intelligently, performing better than M-GLOBAL for 

large YO read sizes. We introduced a dynamic allocation that takes place in the background of the 

YO operation. We show that execution time improvements of 10% or more can be obtained with 

this technique, and we expect even better behavior on more skewed data distributions. Also, we 

studied the effect of scalable computation on hiding the VO bottleneck, and we showed that for 
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moderate sizes of scalable problems, the YO latency can be effectively hidden using a combination 

of asynchronous calls and dynamic load balancing. 
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